Виды электрических сигналов. Типы сигналов. Связь между сигналами различных типов Что такое аналоговый сигнал и его виды

ТЕМА 3 Устройства цифровой обработки сигналов

ЛЕКЦИЯ 8_

Основные понятия цифровой обработки сигналов

Вопросы лекции:

Типы сигналов. Связь между сигналами различных типов.

Системы счисления и коды, используемые в ЦАП- и АЦП-преобразователях.

Области применения ЦАП и АЦП

Основные параметры и классификация ЦАП и АЦП

Типы сигналов. Связь между сигналами различных типов

Все многообразие сигналов можно разделить на три основных типа сигналов: аналоговые, дискретные и цифровые.

Аналоговый сигнал описывается непрерывной или кусочно-непрерывной функцией , причем и аргумент и сама функция могут принимать любые значения из некоторых интервалов: , .

Примеры. , речевой сигнал в радиовещании и телевидении.

Дискретный сигнал описывается решетчатой функцией , которая может принимать любые значение , в то время как независимая переменная может принимать лишь дискретные значения ( - интервал дискретизации).

К дискретным неквантованным сигналам относятся сигналы с амплитудно-импульсной модуляцией.

Цифровой сигнал описывается квантованной решетчатой функцией, то есть решетчатой функцией, принимающей лишь ряд дискретных значений - уровней квантования , в то время как независимая переменная принимает .

Каждый из уровней квантования кодируется двоичным кодом, так что передача и обработка отсчета цифрового кодированного сигнала сводится к операциям над безразмерным двоичным кодом. Число уровней квантования и число двоичных разрядов связаны зависимостью .

К цифровым сигналам относятся, например, сигналы, используемые в системах связи с импульсно-кодовой модуляцией.

Операция дискретизации связывает аналоговый и дискретный сигнал и состоит в том, что по аналоговому сигналу строится дискретный сигнал такой, что .

Операция восстановления состоит в том, что по заданному дискретному сигналу строится аналоговый сигнал .

Операции восстановления и дискретизации взаимно обратны, если дискретизируемый аналоговый сигнал удовлетворяет теореме Котельникова.



Связь между спектром аналогового сигнала и спектром дискретного сигнала определяется формулой

.

Это выражение описывает «размножение» спектра аналогового сигнала при дискретизации.

Операция квантования и кодирования (аналого-цифрового преобразования) состоит в том, что по заданному дискретному сигналу строится кодированный сигнал , такой что , .

Операция цифро-аналогового преобразования состоит в том, что по заданному цифровому кодированному сигналу строят дискретный сигнал, причем .

Операции квантования и кодирования и цифро-аналогового преобразования не являются точно взаимно обратными, так как квантование в общем случае выполняется с неустранимой погрешностью. Однако, если для представления каждого отсчета использовать достаточно большое количество двоичных сигналов, то погрешность квантования окажется достаточно малой и дискретный сигнал (и, следовательно, соответствующий аналоговый сигнал) может быть заменен цифровым сигналом.

Операции дискретизации, квантования и кодирования выполняют аналого-цифровые преобразователи (АЦП) , а операции цифро-аналогового преобразования и восстановления - цифро-аналоговые преобразователи (АЦП) .

Устройства цифровой обработки сигналов (ЦОС)- это устройства, реализующие тот или иной алгоритм цифровой обработки.

Основные преимущества ЦОС по сравнению с аналоговыми:

1) характеристики устройств ЦОС абсолютно стабильны и не изменяются при изменении внешних условий (температура, влажность и.т.д.), пока эти устройства сохраняют работоспособность;

2) возможна реализация ряда операций и алгоритмов, принципиально нереализуемых с помощью аналоговых элементов, например обработка инфранизкочастотных сигналов, так как цифровые запоминающие устройства обладают практически неограниченной длительностью хранения информации.

устройства ЦОС удобно реализовывать в виде БИС и СБИС.

Среди недостатков УЦОС можно выделить следующие:

1) Относительно низкая скорость обработки;

2) Относительно большая потребляемая мощность;

3) Относительно большая стоимость;

4) Необходимость использования на входе и выходе УЦОС АЦП и ЦАП.

Необходимо отметить, что значимость первых двух недостатков уменьшается благодаря развитию технологий изготовления БИС и СБИС. В стоимости УЦОС все больший вес приобретает стоимость алгоритмов и программ. Принципиально точность УЦОС ограничена применяемыми АЦП И ЦАП. Точность вычислений в самом устройстве определяется числом двоичных разрядов, используемых для представления кодов.

2. Системы счисления и коды,
используемые в ЦАП- и АЦП-преобразователях

Обычно для представления чисел используется десятичная позиционная система счисления, в которой каждое число представлено в виде суммы степеней 10, хотя записываются только коэффициенты этого разложения:

В десятичной системе для представления коэффициентов разложения используются 10 цифр.

Однако цифровые устройства преобразуют информацию представленную всего двумя цифрами 0 и 1, поэтому для представления чисел удобно пользоваться двоичной системой счисления, в которой веса двоичных коэффициентов являются степенями 2.

Измеряемые физические величины могут быть униполярными так и биполярными. Поэтому для их представления в цифровом виде в АЦП и ЦАП используются как униполярные так и биполярные коды.

Униполярные коды.

Двоичный код (обычный двоичный код).

Самый правый разряд - это младший значащий разряд (МЗР), самый левый - старший значащий разряд (СЗР).

В этом коде вклад каждого бита (двоичного разряда) зависит от занимаемой позиции:

В битовой последовательности СЗР имеет вес , а максимальное число, которое можно представить разрядным кодом равно .

Кодирование дробных чисел

При рассмотрении работы АЦП важно рассматривать двоичное число как представление дробной части некоторого целого. В этом случае вес МЗР равен , а вес СЗР - . Перед числом подразумевается запятая:

.

Величина дробного числа, соответствующего единицам во всех разрядах определяется как 1-1МЗР. Кроме того МЗР определяет разрешение -разрядного кода преобразователя


3. Области применения ЦАП и АЦП

Уровень и развитие микроэлектронных ЦАП и АЦП определяются требованиями к техническим и эксплуатационным характеристикам радиотехнических систем, в которых они применяются.

Эти требования могут существенно различаться в зависимости от назначения, принципа действия и условий эксплуатации систем.

Необходимость в приеме, обработке, передачи большого объема информации в реальном масштабе времени, а также проблемы исследования быстропротекающих процессов в различных установках привели к созданию быстродействующих интегральных микросхем ЦАП и АЦП .

Решение проблем связи потребовало создание многоканальных преобразователей .

Прецизионные измерения, сейсморазведка, робототехника, аппаратура высококачественной ауди- и видеозаписи невозможны без преобразователей, обладающих высоким разрешением .

Жесткие требования по энергопотреблению и массогабаритным характеристикам, предъявляемым к бортовым системам удовлетворяются за счет применения микромощных и функционально законченных преобразователей .

Для РТС военного назначения требуются преобразователи, устойчивые к воздействию различных внешних факторов .

Для бытовых электро- и радиоприборов требуется широкая номенклатура недорогих преобразователей, не обладающих рекордными значениями электрических параметров и эксплуатационных характеристик.

Некоторые области применения АЦП:

Усредненные значения параметров
Области применения число дв. разрядов время преобразования (мкс) полоса частот вх. сигнала, Гц Дифференциальная нелинейность, МЗР
Радиолокация 6-8 0.05 2 10 7 0.5
Радиолокация (дальнее обнаружение) 14-16 2 10 3 0.5
Авиакосмические средства обработки данных 0.01 до 10 8 0.5
Радионавигация 8-10 0.05-0.1 10 7 0.5
Высококачественная ауди- и видеозапись 2 10 4 0.5
Приборы для физических исследований 16-18 1-5 0.5
Спец. Цифровые вычислители 3-5 10 5 0.5

Некоторые области применения ЦАП.


3 Основные параметры и классификация ЦАП и АЦП

Классификация ЦАП осуществляется по методам преобразования .

Различают два метода преобразования -

* метод суммирования единичной аналоговой величины (квантов);

* метод суммирования с учетом веса разрядов.

По схеме реализации ЦАП разделяются на: ЦАП с суммированием напряжений, ЦАП с суммированием токов, ЦАП умножающие.

Параметры ЦАП.

Параметры номинальной функции преобразования.

Номинальная функция преобразования имеет вид

Или при двоичном кодировании.

Графически интерпретируется точками на прямой. Конечное значение выходного сигнала .

Параметрами этой функции являются коэффициент преобразования , вид кода входного сигнала и количество разрядов .

Коэффициент преобразования есть отношение приращения аналогового сигнала к приращению цифрового сигнала. Имеет размерность выходной величины и численно равен номинальной единице младшего разряда.

Входным кодом может быть натуральный двоичный код, двоично-десятичные коды.

Параметры статической точности.

Погрешность преобразования - отклонение реальной функции преобразования от номинальной.

Погрешность преобразования систематическая - усредненное во времени значение погрешности преобразования при неизменном значении управляющего кода.

Погрешность преобразования случайная - случайная составляющая (шум) выходного сигнала при неизменном значении входного кода.

Нелинейность преобразования - максимальное отклонение значений реальной функции преобразования от соответствующих точек на прямой, аппроксимирующей эту функцию.

Дифференциальная нелинейность преобразования - отклонение приращения выходного сигнала при переходе входного кода на смежное значение от значения единицы МЗР. Выражается в долях единицы МЗР.

Динамические параметры.

Время установления по току (напряжению ) - интервал времени от момента заданного изменения кода на входе ЦАП до момента, при котором выходной аналоговый сигнал окончательно войдет в зону установившегося состояния, соответствующего ±1/2 МЗР или другому оговоренному значению.

Выброс выходного сигнала - краткий всплеск в выходном сигнале при изменении входного кода.

Функция влияния - зависимость изменения параметров от влияющих факторов (температура, питающего напряжения и тд.).

Параметры сопряжения электрические .

Характеризуют все входы и выходы ЦАП с точки зрения сопряжения с внешними устройствами. Разделяются на параметры аналогового сопряжения и параметры цифрового сопряжения.

К первым относятся входные и выходные сопротивления, номинальные значения и допуски питающих напряжений, внешних опорных напряжений.

Ко вторым - номинальные значения и допуски напряжений лог. «0» и лог. «1», входные полные сопротивления (токи) со стороны цифровых входов.

Каждый день люди сталкиваются с использованием электронных приборов. Без них невозможна современная жизнь. Ведь речь идет о телевизоре, радио, компьютере, телефоне, мультиварке и прочем. Раньше, еще несколько лет назад, никто не задумывался о том, какой сигнал используется в каждом работоспособном приборе. Сейчас же слова «аналоговый», «цифровой», «дискретный» уже давно на слуху. Некоторые виды сигналов из перечисленных являются качественными и надежными.

Цифровая передача стала использоваться намного позже, чем аналоговая. Это связано с тем, что такой сигнал намного проще обслуживать, да и техника на тот момент не была настолько усовершенствована.

С понятием «дискретность» сталкивается каждый человек постоянно. Если переводить это слово с латинского языка, то означать оно будет «прерывистость». Углубляясь далеко в науку, можно сказать, что дискретный сигнал представляет собой метод передачи информации, который подразумевает изменение во времени среды-переносчика. Последняя принимает любое значение из всех возможных. Сейчас дискретность уходит на второй план, после того, как было принято решение производить системы на чипе. Они являются целостными, а все компоненты тесно взаимодействуют друг с другом. В дискретности же все с точностью наоборот - каждая деталь завершена и связана с другими за счет специальных линий связи.

Сигнал

Сигнал представляет собой специальный код, который передается в пространство одной или несколькими системами. Эта формулировка является общей.

В сфере информации и связи сигналом назван специальный носитель каких-либо данных, который используется для передачи сообщений. Он может быть создан, но не принят, последнее условие не обязательно. Если же сигнал является сообщением, то его «ловля» считается необходимой.

Описываемый код задается математической функцией. Она характеризует все возможные изменения параметров. В радиотехнической теории эта модель считается базовой. В ней же аналогом сигнала был назван шум. Он представляет собой функцию времени, которая свободно взаимодействует с переданным кодом и искажает его.

В статье охарактеризованы виды сигналов: дискретный, аналоговый и цифровой. Также коротко дана основная теория по описываемой теме.

Виды сигналов

Существует несколько имеющихся сигналов. Рассмотрим, какие бывают виды.

  1. По физической среде носителя данных разделяют электрический сигнал, оптический, акустический и электромагнитный. Имеется еще несколько видов, однако они малоизвестны.
  2. По способу задания сигналы делятся на регулярные и нерегулярные. Первые представляют собой детерминированные методы передачи данных, которые задаются аналитической функцией. Случайные же формулируются за счет теории вероятности, а также они принимают любые значения в различные промежутки времени.
  3. В зависимости от функций, которые описывают все параметры сигнала, методы передачи данных могут быть аналоговыми, дискретными, цифровыми (способ, который является квантованным по уровню). Они используются для обеспечения работы многих электрических приборов.

Теперь читателю известны все виды передачи сигналов. Разобраться в них не составит труда любому человеку, главное - немного подумать и вспомнить школьный курс физики.

Для чего обрабатывается сигнал?

Сигнал обрабатывается с целью передачи и получения информации, которая в нем зашифрована. Как только она будет извлечена, ее можно использовать различными способами. В отдельных ситуациях ее переформатируют.

Существует и другая причина обработки всех сигналов. Она заключается в небольшом сжатии частот (чтобы не повредить информацию). После этого ее форматируют и передают на медленных скоростях.

В аналоговом и цифровом сигналах используются особенные методы. В частности, фильтрация, свертка, корреляция. Они необходимы для восстановления сигнала, если он поврежден или имеет шум.

Создание и формирование

Зачастую для формирования сигналов необходим аналого-цифровой (АЦП) и Чаще всего они оба используются лишь в ситуации с применением DSP-технологий. В остальных случаях подойдет только использование ЦАП.

При создании физических аналоговых кодов с дальнейшим применением цифровых методов полагаются на полученную информацию, которая передается со специальных приборов.

Динамический диапазон

Вычисляется разностью большего и меньшего уровня громкости, которые выражены в децибелах. Он полностью зависит от произведения и особенностей исполнения. Речь идет как о музыкальных треках, так и об обычных диалогах между людьми. Если брать, например, диктора, который читает новости, то его динамический диапазон колеблется в районе 25-30 дБ. А во время чтения какого-либо произведения он может вырастать до 50 дБ.

Аналоговый сигнал

Аналоговый сигнал является непрерывным во времени способом передачи данных. Недостатком его можно назвать присутствие шума, который иногда приводит к полной потере информации. Очень часто возникают такие ситуации, что невозможно определить, где в коде важные данные, а где обычные искажения.

Именно из-за этого цифровая обработка сигналов приобрела большую популярность и постепенно вытесняет аналоговую.

Цифровой сигнал

Цифровой сигнал является особым он описывается за счет дискретных функций. Его амплитуда может принять определенное значение из уже заданных. Если аналоговый сигнал способен поступать с огромным количеством шумов, то цифровой отфильтровывает большую часть полученных помех.

Помимо этого, такой вид передачи данных переносит информацию без лишней смысловой нагрузки. Через один физический канал может быть отправлено сразу несколько кодов.

Виды цифрового сигнала не существуют, так как он выделяется как отдельный и самостоятельный метод передачи данных. Он представляет собой двоичный поток. В наше время такой сигнал считается самым популярным. Это связано с простотой использования.

Применение цифрового сигнала

Чем же отличается цифровой электрический сигнал от других? Тем, что он способен совершать в ретрансляторе полную регенерацию. Когда в оборудование связи поступает сигнал, имеющий малейшие помехи, он сразу же меняет свою форму на цифровую. Это позволяет, например, телевышке снова сформировать сигнал, но уже без шумового эффекта.

В том случае, если код поступает уже с большими искажениями, то, к сожалению, восстановлению он не подлежит. Если брать в сравнении аналоговую связь, то в аналогичной ситуации ретранслятор может извлечь часть данных, затрачивая много энергии.

Обсуждая сотовую связь разных форматов, при сильном искажении на цифровой линии разговаривать практически невозможно, так как не слышны слова или целые фразы. Аналоговая связь в таком случае более действенна, ведь можно продолжать вести диалог.

Именно из-за подобных неполадок цифровой сигнал ретрансляторы формируют очень часто для того, чтобы сократить разрыв линии связи.

Дискретный сигнал

Сейчас каждый человек пользуется мобильным телефоном или какой-то «звонилкой» на своем компьютере. Одна из задач приборов или программного обеспечения - это передача сигнала, в данном случае голосового потока. Для переноса непрерывной волны необходим канал, который имел бы пропускную способность высшего уровня. Именно поэтому было предпринято решение использовать дискретный сигнал. Он создает не саму волну, а ее цифровой вид. Почему же? Потому что передача идет от техники (например, телефона или компьютера). В чем плюсы такого вида переноса информации? С его помощью уменьшается общее количество передаваемых данных, а также легче организуется пакетная отправка.

Понятие «дискретизация» уже давно стабильно используется в работе вычислительной техники. Благодаря такому сигналу передается не непрерывная информация, которая полностью закодирована специальными символами и буквами, а данные, собранные в особенные блоки. Они являются отдельными и законченными частицами. Такой метод кодировки уже давно отодвинулся на второй план, однако не исчез полностью. С помощью него можно легко передавать небольшие куски информации.

Сравнение цифрового и аналогового сигналов

Покупая технику, вряд ли кто-то думает о том, какие виды сигналов использованы в том или другом приборе, а об их среде и природе уж тем более. Но иногда все же приходится разбираться с понятиями.

Уже давно стало ясно, что аналоговые технологии теряют спрос, ведь их использование нерационально. Взамен приходит цифровая связь. Нужно понимать, о чем идет речь и от чего отказывается человечество.

Если говорить коротко, то аналоговый сигнал - способ передачи информации, который подразумевает описание данных непрерывными функциями времени. По сути, говоря конкретно, амплитуда колебаний может быть равна любому значению, находящемуся в определенных границах.

Цифровая обработка сигналов описывается дискретными функциями времени. Иначе говоря, амплитуда колебаний этого метода равна строго заданным значениям.

Переходя от теории к практике, надо сказать о том, что аналоговому сигналу характерны помехи. С цифровым же таких проблем нет, потому что он успешно их «сглаживает». За счет новых технологий такой метод передачи данных способен своими силами без вмешательства ученого восстановить всю исходную информацию.

Говоря о телевидении, можно уже с уверенностью сказать: аналоговая передача давно изжила себя. Большинство потребителей переходят на цифровой сигнал. Минус последнего заключается в том, что если аналоговую передачу способен принимать любой прибор, то более современный способ - только специальная техника. Хоть и спрос на устаревший метод уже давно упал, все же такие виды сигналов до сих пор не способны полностью уйти из повседневной жизни.

Аналоговый сигнал является непрерывной функцией непрерывного аргумента, т.е. определен для любого значения независимой переменной. Источниками аналоговых сигналов, как правило, являются физические процессы и явления, непрерывные в своем развитии (динамике изменения значений определенных свойств) во времени, в пространстве или по любой другой независимой переменной, при этом регистрируемый сигнал подобен (аналогичен) порождающему его процессу. Пример математической записи конкретного аналогового сигнала: y (t ) = 4.8exp[-(t -4) 2 /2.8]. Пример графического отображения данного сигнала приведен на Рис. 2.2.1, при этом как числовые величины самой функция, так и ее аргументов, могут принимать любые значения в пределах некоторых интервалов y 1 £ y £ y 2 , t 1 £ t £ t 2 . Если интервалы значений сигнала или его независимых переменных не ограничиваются, то по умолчанию они принимаются равными от -¥ до +¥. Множество возможных значений сигнала образует непрерывное пространство, в котором любая точка может быть определена с бесконечной точностью.

Рис. 2.2.1. Графическое отображение сигнала y (t ) = 4.8 exp[-(t -4) 2 /2.8].

Дискретный сигнал по своим значениям также является непрерывной функцией, но определенной только по дискретным значениям аргумента. По множеству своих значений он является конечным (счетным) и описывается дискретной последовательностью y (n ×Dt ), где y 1 £ y £ y 2 , Dt - интервал между отсчетами (интервал дискретизации сигнала), n = 0, 1, 2, ..., N – нумерация дискретных значений отсчетов. Если дискретный сигнал получен дискретизацией аналогового сигнала, то он представляет собой последовательность отсчетов, значения которых в точности равны значениям исходного сигнала по координатам n Dt .

Пример дискретизации аналогового сигнала, приведенного на Рис. 2.2.1, представлен на Рис. 2.2.2. При Dt = const (равномерная дискретизация данных) дискретный сигнал можно описывать сокращенным обозначением y (n ).

При неравномерной дискретизации сигнала обозначения дискретных последовательностей (в текстовых описаниях) обычно заключаются в фигурные скобки - {s (t i )}, а значения отсчетов приводятся в виде таблиц с указанием значений координат t i . Для коротких неравномерных числовых последовательностей применяется и следующее числовое описание: s (t i ) = {a 1 , a 2 , ..., a N }, t = t 1 , t 2 , ..., t N .

Цифровой сигнал квантован по своим значениям и дискретен по аргументу. Он описывается квантованной решетчатой функцией y n = Q k [y (n Dt )], где Q k - функция квантования с числом уровней квантования k , при этом интервалы квантования могут быть как с равномерным распределением, так и с неравномерным, например - логарифмическим. Задается цифровой сигнал, как правило, в виде числового массива по последовательным значениям аргумента при Dt = const, но, в общем случае, сигнал может задаваться и в виде таблицы для произвольных значений аргумента.



По существу, цифровой сигнал является формализованной разновидностью дискретного сигнала при округлении значений последнего до определенного количества цифр, как это показано на Рис. 2.2.3. В цифровых системах и в ЭВМ сигнал всегда представлен с точностью до определенного количества разрядов и следовательно всегда является цифровым, С учетом этих факторов при описании цифровых сигналов функция квантования обычно опускается (подразумевается равномерной по умолчанию), а для описания сигналов используются правила описания дискретных сигналов.

Рис. 2.2.2. Дискретный сигнал Рис. 2.2.3. Цифровой сигнал

y (n Dt ) = 4.8 exp[-(n Dt -4) 2 /2.8], Dt = 1. y n = Q k , Dt =1, k = 5.

В принципе, квантованным по своим значениям может быть и аналоговый сигнал, зарегистрированный соответствующей цифровой аппаратурой (Рис. 2.2.4). Но выделять эти сигналы в отдельный тип не имеет смысла - они остаются аналоговыми кусочно-непрерывными сигналами с шагом квантования, который определяется допустимой погрешностью измерений.

Большинство дискретных и цифровых сигналов, с которыми приходится иметь дело, являются дискретизированными аналоговыми сигналами. Но существуют сигналы, которые изначально относятся к классу дискретных, например гамма-кванты.

Рис. 2.2.4. Квантованный сигнал y (t ) = Q k , k = 5.

Спектральное представление сигналов. Кроме привычного временного (координатного) представления сигналов и функций при анализе и обработке данных широко используется описание сигналов функциями частоты, т.е. по аргументам, обратным аргументам временного (координатного) представления. Возможность такого описания определяется тем, что любой сколь угодно сложный по своей форме сигнал можно представить в виде суммы более простых сигналов, и, в частности, в виде суммы простейших гармонических колебаний, совокупность которых называется частотным спектром сигнала. Математически спектр сигналов описывается функциями значений амплитуд и начальных фаз гармонических колебаний по непрерывному или дискретному аргументу - частоте . Спектр амплитуд обычно называется амплитудно-частотной характеристикой (АЧХ) сигнала, спектр фазовых углов – фазо-частотной характеристикой (ФЧХ). Описание частотного спектра отображает сигнал так же однозначно, как и координатное описание.

На Рис. 2.2.5 приведен отрезок сигнальной функции, которая получена суммированием постоянной составляющей (частота постоянной составляющей равна 0) и трех гармонических колебаний. Математическое описание сигнала определяется формулой:

где A n = {5, 3, 6, 8} - амплитуда; f n = {0, 40, 80, 120} - частота (Гц); φ n = {0, -0.4, -0.6, -0.8} - начальный фазовый угол (в радианах) колебаний; n = 0,1,2,3.

Рис. 2.2.5. Временное представление сигнала.

Частотное представление данного сигнала (спектр сигнала в виде АЧХ и ФЧХ) приведено на Рис. 2.2.6. Обратим внимание, что частотное представление периодического сигнала s (t ), ограниченного по числу гармоник спектра, составляет всего восемь отсчетов и весьма компактно по сравнению с непрерывным временным представлением, определенным в интервале от -¥ до +¥.

Рис. 2.2.6. Частотное представление сигнала.

Графическое отображение аналоговых сигналов (Рис. 2.2.1) особых пояснений не требует. При графическом отображении дискретных и цифровых сигналов используется либо способ непосредственных дискретных отрезков соответствующей масштабной длины над осью аргумента (Рис. 2.2.6), либо способ огибающей (плавной или ломанной) по значениям отсчетов (пунктирная кривая на Рис. 2.2.2). В силу непрерывности полей и, как правило, вторичности цифровых данных, получаемых дискретизацией и квантованием аналоговых сигналов, второй способ графического отображения будем считать основным.

Различают четыре вида сигналов s(t): непрерывный непрерывного времени, непрерывный дискретного времени, дискретный непрерывного времени и дискретный дискретного времени .

Непрерывные сигналы непрерывного времени называют сокращенно непрерывными (аналоговыми) сигналами. Они могут изменяться в произвольные моменты, принимая любые из непрерывного множества возможных значении (рис. 1.3). К таким сигналам относится и известная всем синусоида.

Рис. 1.3 Непрерывный сигнал

Рис. 1.4 Непрерывный сигнал дискретною времени

Непрерывные сигналы дискретного времени могут принимать произвольные значения, но изменяться только в определенные, наперед заданные (дискретные) моменты (рис. 1.4).

Дискретные сигналы непрерывного времени отличаются тем, что они могут изменяться в произвольные моменты, но их величины принимают только разрешенные (дискретные) значения (рис. 1.5).

Дискретные сигналы дискретного времени (сокращенно дискретные) (рис. 1.6) в днекретные моменты времени могут принимать только разрешенные (днекретные) значения.

Сигналы, формируемые на выходе преобразователя дискретного сообщения в сигнал, как правило, являются по информационному параметру дискретными, т. е. описываются функцией дискретного времени и конечным множеством возможных значений. В технике передачи данных такие сигналы называют цифровыми сигналами данных (ЦСД). Параметр сигнала данных, изменение которого отображает изменение сообщения, называется представляющим (информационным) . На рис. 1.7 изображен ЦСД, представляющим параметром которого является амплитуда, а множество возможных значений представляющего параметра равно двум Часть цифрового сигнала данных, отличающаяся от остальных частей значением одного из своих представляющих. параметров, называется элементом ЦСД.

Фиксируемое значение состояния представляющею параметра сигнала называется значащей позицией. Момент, в который происходит смена значащей позиции сигнала, называется значащим (ЗМ).

Рис. 1.5 Дискретный сигнал непрерывною времени

Рис. 1.6 Дискретный сигнал

Рис. 1.7 Цифровой сигнал данных

Интервал времени между двумя соседними значащими моментами сигнала называется значащим (ЗИ)

Минимальный интервал времени то, которому равны значащие интервалы времени сигнала, называется единичным (интервалы а-б, б-в и другие на рис 1 7). Элемент сигнала, имеющий длительность, равную единичному интервалу времени, называется единичным (е э)

Термин единичный элемент является одним из основных в технике передачи данных. В телеграфии ему соответствует термин элементарная посылка

Различают изохронное и анизохронные сигналы данных Для изохронного сигнала любой значащий интервал времени равен единичному интервалу или их целому числу. Анизохронными называются сигналы, элементы которых могут иметь любую длительность, но не менее чем Другой особенностью анизохронных сигналов является то, что они могут отстоять друг от друга во времени на произвольном расстоянии


Рассматривая сигналы и виды сигналов, необходимо сказать, что существуют различное количество данных связей. Каждый день любой человек сталкивается с использованием электронного прибора. Без них современная жизнь уже никому не представляется. Речь идет о работе телевизора, радио, компьютере и так далее. Раньше никто не задумывался о том, какой сигнал используется во многих работоспособных приборах. Сейчас же уже давно на слуху слова аналоговый, цифровой и дискретный.

Не все, однако некоторые из вышеперечисленных сигналов считаются довольно качественными и надежными. Цифровая передача используется не так давно, как аналоговая. Это связано с тем, что техника стала поддерживать данный вид только недавно, открыт был этот вид сигнала также сравнительно не так давно. С дискретностью любой человек сталкивается постоянно. Говоря о видах обработки сигнала, необходимо напомнить, что этот немного прерывистый.

Если углубляться в науку, то следует сказать, что дискретной является передача информации, которая позволяет переносить данные и изменять время среды. Благодаря последнему свойству дискретный сигнал может принимать любое значение. На данный момент этот показатель уходит на второй план, после того как большинство техники начали производить на чипах.

Цифровой и другие сигналы целостные, компоненты взаимодействуют друг с другом на все 100 %. В дискретности же все наоборот. Дело в том, что здесь каждая деталь работает самостоятельно и отвечает за свои функции отдельно.

Сигнал

Рассмотрим виды сигналов связи чуть позже, сейчас же следует познакомиться с том, что же собой представляет в принципе сам сигнал. Это обычный код, который передается по воздуху системами. Это формулировка общего типа.

В сфере информации и некоторых других технологий имеется специальный носитель, который позволяет передавать сообщения. Его можно создать, но принять невозможно. В принципе в некоторых системах его могут принять, но это не обязательно. Если сигнал будет считаться сообщением, то «поймать» его нужно обязательно.

Подобный код передачи данных можно назвать обычной математической функцией. Он описывает любое изменение доступных параметров. Если рассматривать радиотехническую теорию, то следует сказать, что такие опции считаются базовыми. Следует заметить, что понятие «шум» является аналогичным сигналу.

Он искажает его, может накладываться на уже переданный код, а также сам собой представляет функцию времени. В статье будут ниже охарактеризованы сигналы и виды сигналов, речь идет о дискретном, аналоговом и цифровом. Коротко рассмотрим всю теорию по теме.

Виды сигналов

Имеется несколько видов, а также классификации уже имеющихся сигналов. Рассмотрим их.

Первый тип - это электрический сигнал, есть также оптический, электромагнитный и акустический. Имеется еще несколько подобных типов, однако они не являются популярными. Такая классификация происходит по физической среде.

По способу задания сигнала они разделяются на регулярные и нерегулярные. Первый вид имеет аналитическую функцию, а также детерминированный вид передачи данных. Случайные сигналы могут формироваться при помощи некоторых теорий из высшей математики, более того, они способны принимать многие значения в совершенно разные промежутки времени.

Виды передачи сигналов довольно разные, следует отметить, что сигналы по данной классификации разделяются на аналоговые, дискретные и цифровые. Нередко для обеспечения работы электрических приборов используются именно такие сигналы. Для того чтобы разобраться с каждым из вариантов, необходимо вспомнить школьный курс физики и немного почитать теории.

Для чего обрабатывается сигнал?

Сигнал следует обрабатывать для того, чтобы получить информацию, которая в нем зашифрована. Если рассматривать виды модуляции сигнала, то следует отметить, что по амплитудной и частотной манипуляции это довольно сложный процесс, который необходимо полностью понимать. Как только информация будет получена, ее можно использовать совершенно различными способами. В некоторых ситуациях ее форматируют и отправляют далее.

Также нужно отметить другие причины, по которым происходит обработка сигналов. Она заключается в том, чтобы сжать частоты, которые передаются, однако не повредив всю информацию. Далее ее форматируют еще раз и передают. При этом делается это на медленных скоростях. Если говорить о сигналах аналогового и цифрового вида, то здесь используются особенные способы. Имеется фильтрация, свертка и некоторые другие функции. Они нужны для того, чтобы восстановить информацию, если сигнал был поврежден.

Создание и форматирование

Многие виды информационных сигналов, о которых мы поговорим в статье, необходимо создать и после форматировать. Для этого следует иметь цифро-аналоговый преобразователь, а также аналого-цифровой. Как правило, используются они оба в одной ситуации: только в случае использования такой техники как DSP.

В остальных случаях подойдет лишь первый прибор. Для того чтобы создать физические аналоговые коды и потом их переформатировать в цифровые методы, необходимо использовать специальные приборы. Это позволит максимально предотвратить повреждение информации.

Динамический диапазон

Диапазон любого вида аналогового сигнала вычислить несложно. Необходимо использовать разницу большего и меньшего уровня громкости, который показывается в децибелах.

Следует заметить, что информация зависит полностью от особенностей ее исполнения. Причем речь идет как о музыке, так и о разговорах простого человека. Если брать диктора, который будет читать новости, то его динамический диапазон будет составлять не больше 30 децибел. А если читать какое-либо произведение в красках, то этот показатель вырастет до 50.

Аналоговый сигнал

Виды представления сигнала довольный разные. При этом нужно заметить, что аналоговый сигнал является непрерывным. Если говорить о недостатках, то многие отмечают наличие шума, который может, к сожалению, приводить к потери информации.

Довольно часто возникает такая ситуация, что непонятно, где в коде есть действительно важная информация, а где просто искажения. Именно из-за этого аналоговый сигнал стал менее популярен, и на данный момент его вытесняет цифровая технология.

Цифровой сигнал

Нужно заметить, что такой сигнал, как и виды сигналов другие, является потоком данных, который описывается за счет дискретных характеристик.

Нужно заметить, что его амплитуда может повторяться. Если вышеописанный аналоговый вариант способен поступать в конечную точку с огромным количеством шумов, то цифровой подобного не допускает. Он способен самостоятельно ликвидировать большую часть помех, для того чтобы избежать повреждения информации. Также нужно заметить, что данный вид переносит информацию без каких-либо смысловых нагрузок.

Таким образом, через один физический канал пользователь может без труда отправить несколько сообщений. Нужно заметить, что, в отличие от видов звукового сигнала, которые являются максимально распространенными на данный момент, а также аналогового, цифровой не делится на несколько типов. Он является единственным и самостоятельным. Представляет собой двоичный поток. Сейчас является довольно популярным, его просто использовать, о чем свидетельствуют отзывы.

Применение цифрового сигнала

Рассматривая виды передачи сигналов, необходимо сказать о том, где применяется цифровой вариант. Чем же отличается он от многих других при передаче и при использовании? Дело в том, что, поступая в ретранслятор, он полностью регенерируется.

Когда в оборудование поступает сигнал, который в процессе передачи получил шумы и помехи, он сразу же форматируется. Благодаря этому телевышки могут сформировать сигнал заново, избегая использования шумового эффекта.

Аналоговая связь в этом случае будет намного лучше, так как при получении информации с большим количеством искажений, ее можно извлечь хотя бы частично. Если говорить о цифровом варианте, то это невозможно. Если более 50 % сигнала будет иметь шум, то можно считать, что информация полностью утрачена.

Многие люди, обсуждая сотовую связь, причем совершенно разных форматов и способов передачи, говорили, что иногда практически невозможно разговаривать. Люди могут не слышать слова или же фразы. Такое может происходить только на цифровой линии, если имеется шум.

Если говорить об аналоговой связи, то в этом случае разговор будет можно продолжать далее. Из-за таких неполадок ретрансляторы формируют сигнал всегда по новой, для того чтобы сократить разрывы.

Дискретный сигнал

В данный момент человек пользуется различными звонилками или же другими электронными приборами, которые принимают сигналы. Виды сигналы довольно разнообразны, и одним из них является дискретный. Нужно заметить, что, для того чтобы такие приспособления работали, необходимо передавать звуковой сигнал. Именно поэтому необходим канал, который имеет пропускную способность намного большего уровня, чем было описано ранее.

С чем это связано? Дело в том, что, для того чтобы качественно передать звук, необходимо использовать дискретный сигнал. Он создает не волну звука, а его цифровую копию. Соответственно, передача идет от самой техники. Плюсы такого переноса в том, что пакетная отправка будет осуществляться пакетами, а количество передаваемых данных уменьшится.

Тонкости

В работе вычислительной техники уже давно имеется такое понятие, как дискретизация. За счет такого сигнала можно использовать информацию, которая полностью закодирована. Она не является непрерывной, а данные все собранные в блоки. При этом последние являются отдельными частицами, которые полностью завершены и не зависят друг от друга.

Виды модуляции

Описывая виды сигналов и сигналы в целом, необходимо также поговорить и о модуляции. Что это такое? Это процесс изменения сразу нескольких параметров колебаний, которые осуществляются по определенному закону. Нужно заметить, что делится модуляция на цифровую и импульсную, а также на некоторые другие.

В свою очередь, многие из них делятся отдельно на несколько видов, причем их довольно много. Следует сказать об основных характеристиках такого понятия. Например, за счет видов модуляции сигнала можно добиться устойчивой передачи, минимальной потери, однако следует заметить, что для каждого из них требуется особенный усилитель линейности.