Как сделать импульсный прибор. Защита электроники от электромагнитного импульса. Общая защита от электромагнитного излучения

Технический прогресс имеет и обратную сторону. Глобальное использование различной техники, работающей от электричества, стало причиной загрязнения, которому дали название – электромагнитный шум. В этой статье мы рассмотрим природу этого явления, степень его воздействия на организм человека и меры защиты.

Что это такое и источники излучения

Электромагнитное излучение – это электромагнитные волны, которые возникают при возмущении магнитного или электрического поля. Современная физика трактует этот процесс в рамках теории корпускулярно-волнового дуализма. То есть, минимальной порцией электромагнитного излучения является квант, но в тоже время оно имеет частотно-волновые свойства, определяющие его основные характеристики.

Спектр частот излучения электромагнитного поля, позволяет классифицировать его на следующие виды:

  • радиочастотное (к ним относятся радиоволны);
  • тепловое (инфракрасное);
  • оптическое (то есть, видимое глазом);
  • излучение в ультрафиолетовом спектре и жесткое (ионизированное).

Детальную иллюстрацию спектрального диапазона (шкала электромагнитных излучений), можно увидеть на представленном ниже рисунке.

Природа источников излучения

В зависимости от происхождения, источники излучения электромагнитных волн в мировой практике принято классифицировать на два вида, а именно:

  • возмущения электромагнитного поля искусственного происхождения;
  • излучение, исходящее от естественных источников.

Излучения, исходящие от магнитного поля поле вокруг Земли, электрических процессов в атмосфере нашей планеты, ядерного синтеза в недрах солнца – все они естественного происхождения.

Что касается искусственных источников, то они побочное явление, вызванное работой различных электрических механизмов и приборов.

Исходящее от них излучение, может быть низкоуровневым и высокоуровневым. От уровней мощности источников полностью зависит степень напряженности излучения электромагнитного поля.

В качестве примера источников с высоким уровнем ЭМИ можно привести:

  • ЛЭП, как правило, высоковольтные;
  • все виды электротранспорта, а также сопутствующая ему инфраструктура;
  • теле- и радиовышки, а также станции передвижной и мобильной связи;
  • установки для преобразования напряжения электрической сети (в частности, волны исходящие от трансформатора или распределяющей подстанции);
  • лифты и другие виды подъемного оборудования, где используется электромеханическая силовая установка.

К типичным источникам, излучающим низкоуровневые излучения можно отнести следующее электрооборудование:

  • практически все устройства с ЭЛТ дисплеем (например: платежный терминал или компьютер);
  • различные типы бытовой техники, начиная от утюгов и заканчивая климатическими системами;
  • инженерные системы, обеспечивающие подачу электричества к различным объектам (подразумеваются не только кабель электропередач, а сопутствующее оборудование, например розетки и электросчетчики).

Отдельно стоит выделить специальное оборудование, используемое в медицине, которое испускает жесткое излучение (рентгеновские аппараты, МРТ и т.д.).

Влияние на человека

В ходе многочисленных исследований радиобиологи пришли к неутешительному выводу – длительное излучение электромагнитных волн может стать причиной «взрыва» болезней, то есть оно вызывает бурное развитие паталогических процессов в организме человека. Причем многие из них вносят нарушения на генетическом уровне.

Видео: Как влияет электромагнитное излучение на людей.
https://www.youtube.com/watch?v=FYWgXyHW93Q

Это происходит из-за того, что у электромагнитного поля высокий уровень биологической активности, что негативно отражается живых организмах. Фактор влияния зависит от следующих составляющих:

  • характер производимого излучения;
  • как долго и с какой интенсивностью оно продолжается.

Влияние на здоровье человека излучения, у которого электромагнитная природа, напрямую зависит от локализации. Она может быть как местного, так и общего характера. В последнем случае происходит масштабное облучение, например излучение, производимое ЛЭП.

Соответственно, под местным облучением подразумевается воздействие на определенные участки тела. Исходящие от электронных часов или мобильного телефона электромагнитные волны, яркий пример локального воздействия.

Отдельно необходимо отметить термальное воздействие высокочастотного электромагнитного излучения на живую материю. Энергия поля преобразуется в тепловую энергию (за счет вибрации молекул), на этом эффекте основа работа промышленных СВЧ излучателей, используемых для нагрева различных веществ. В отличие от пользы в производственных процессах, термальное воздействие на организм человека может оказаться пагубным. С точки зрения радиобиологии находиться возле «теплого» электрооборудования не рекомендуется.

Необходимо принять во внимание, что в быту мы регулярно подвергаемся облучению, причем это происходит не только на производстве, а и дома или при перемещении по городу. Со временем биологический эффект накапливается и усиливается. С ростом электромагнитного зашумления возрастает количество характерных заболеваний мозга или нервной системы. Заметим, что радиобиология довольно молодая наука, поэтому вред наносимый живым организмам от электромагнитного излучения досконально не изучен.

На рисунке виден, уровень электромагнитных волн, производимых обычными, используемыми в быту приборами.


Обратите внимание, что уровень напряженности поля существенно снижается на расстоянии. То есть, чтобы уменьшит его действие, достаточно отдалиться от источника на определенное расстояние.

Формула для расчета нормы (нормирование) излучения электромагнитного поля указана в соответствующих ГОСТах и СанПиНах.

Защита от излучения

На производстве в качестве средств, защищающих от облучения, активно применяются поглощающие (защитные) экраны. К сожалению, защититься от излучения электромагнитного поля при помощи такого оборудования в домашних условиях не представляется возможным, поскольку оно на это не рассчитано.

  • чтобы свести воздействие излучения электромагнитного поля практически к нулю, следует отойти от ЛЭП, радио- и телевышек на расстояние не менее 25 метров (необходимо учитывать мощность источника);
  • для ЭЛТ монитора и телевизора это расстояние значительно меньше – около 30 см;
  • электронные часы не следует ставить близко подушке, оптимальное расстояние для них более 5 см;
  • что касается для радио и сотовых телефонов, подносить их ближе, чем на 2,5 сантиметра не рекомендуется.

Заметим, что многие знают, как опасно стоять рядом с высоковольтными линиями электропередач, но при этом большинство людей не придают значения, обычным бытовым электроприборам. Хотя достаточно поставить системный блок на пол или переместить подальше, и вы обезопасите себя и своих близких. Советуем проделать это, после чего замерять фон от компьютера используя детектор излучения электромагнитного поля, чтобы наглядно убедиться в его снижении.

Этот совет также касается и размещения холодильника, многие ставят его неподалеку от кухонного стола, практично, но небезопасно.

Никакая таблица не сможет указать точное безопасное расстояние от конкретного электрооборудования, поскольку излучения может варьироваться, как в зависимости от модели устройства, так и страны производителя. В настоящий момент нет единого международного стандарта, поэтому в разных странах нормы могут иметь существенные расхождения.

Точно определить интенсивность излучения можно при помощи специального прибора – флюксметра. Согласно принятым в России нормам, максимально допустимая доза не должна превышать 0,2мкТл. Рекомендуем произвести замер в квартире, используя указанный выше прибор для измерения степени излучения электромагнитного поля.

Флюксметр – прибор для измерения степени излучения электромагнитного поля

Старайтесь сократить время, когда вы подвергаетесь облучению, то есть, не находитесь долго рядом с работающими электротехническими приборами. Например, совсем не обязательно постоянно стоять у электроплиты или СВЧ-печки во время приготовления пищи. Касательно электрооборудования можно заметить, что теплое, не всегда означает безопасное.

Всегда выключайте неиспользуемые электроприборы. Люди зачастую оставляют включенными различные устройства, не учитывая, что в это время от электротехники исходит электромагнитное излучение. Выключите ноутбук, принтер или другое оборудование, ненужно лишний раз подвергаться облучению, помните про свою безопасность.

Введение.

Для того, чтобы понять всю сложность проблем угрозы ЭМИ и мер по защите от нее, необходимо кратко рассмотреть историю изучения этого физического явления и современное состояние знаний в этой области.

То, что ядерный взрыв будет обязательно сопровождаться электромагнитным излучением, было ясно физикам-теоретикам еще до первого испытания ядерного устройства в 1945 году. Во время проводившихся в конце 50-х - начале 60-х годов ядерных взрывов в атмосфере и космическом пространстве наличие ЭМИ было зафиксировано экспериментально.

Однако количественные характеристики импульса измерялись в недостаточной степени, во-первых, потому что отсутствовала контрольно-измерительная аппаратура, способная регистрировать чрезвычайно мощное электромагнитное излучение, существующее чрезвычайно короткое время (миллионные доли секунду), во-вторых, потому что в те годы в радиоэлектронной аппаратуре использовались исключительно электровакуумные приборы, которые мало подвержены воздействию ЭМИ, что снижало интерес к его изучению. Создание полупроводниковых приборов, а затем и интегральных схем, особенно устройств цифровой техники на их основе, и широкое внедрение средств в радиоэлектронную военную аппаратуру заставили военных специалистов по иному оценить угрозу ЭМИ.

Описание физика ЭМИ.

Механизм генерации ЭМИ заключается в следующем. При ядерном взрыве возникают гамма и рентгеновское излучения и образуется поток нейтронов. Гамма-излучение, взаимодействуя с молекулами атмосферных газов, выбивает из них так называемые комптоновские электроны. Если взрыв осуществляется на высоте 20-40 км., то эти электроны захватываются магнитным полем Земли и, вращаясь относительно силовых линий этого поля создают токи, генерирующие ЭМИ. При этом поле ЭМИ когерентно суммируется по направлению к земной поверхности, т.е. магнитное поле Земли выполняет роль, подобную фазированной антенной решетке. В результате этого резко увеличивается напряженность поля, а следовательно, и амплитуда ЭМИ в районах южнее и севернее эпицентра взрыва. Продолжительность данного процесса с момента взрыва от 1 - 3 до 100 нс.

На следующей стадии, длящейся примерно от 1 мкс до 1 с, ЭМИ создается комптоновскими электронами, выбитыми из молекул многократно отраженным гамма-излучением и за счет неупругого соударения этих электронов с потоком испускаемых при взрыве нейтронов. Интенсивность ЭМИ при этом оказывается примерно на три порядка ниже, чем на первой стадии.

На конечной стадии, занимающей период времени после взрыва от 1 с до нескольких минут, ЭМИ генерируется магнитогидродинамическим эффектом, порождаемым возмущениями магнитного поля Земли токопроводящим огненным шаром взрыва. Интенсивность ЭМИ на этой стадии весьма мала и составляет несколько десятков вольт на километр.

Наибольшую опасность для радиоэлектронных средств представляет первая стадия генерирования ЭМИ, на которой в соответствии с законом электромагнитной индукции из-за чрезвычайно быстрого нарастания амплитуды импульса (максимум достигается на 3 - 5 нс после взрыва) наведенное напряжение может достигать десятков киловольт на метр на уровне земной поверхности, плавно снижаясь по мере удаления от эпицентра взрыва. Кроме временного нарушения функционирования (функционального подавления) РЭС, допускающего последующее восстановление их работоспособности, ЭМИ оружие может осуществлять физическое разрушение (функциональное поражение) полупроводниковых элементов РЭС, в том числе находящихся в выключенном состоянии.

Следует отметить также возможность поражающего действия мощного излучения ЭМИ оружия на электротехнические и электро энергетические системы вооружения и военной техники (ВВТ), электронные системы зажигания двигателей внутреннего сгорания (рис.1). Токи, возбуждаемые электромагнитным полем в цепях электро или радиовзрывателей, установленных на боеприпасах, могут достигать уровней, достаточных для их срабатывания. Потоки высокой энергии в состоянии инициировать детонацию взрывчатых веществ (ВВ) боеголовок ракет, бомб и артиллерийских снарядов, а также неконтактный подрыв мин в радиусе 50–60 м от точки подрыва ЭМИ боеприпаса средних калибров (100–120 мм).

Рис.1.Принудительная остановка автомобиля с электронной системой зажигания.

В отношении поражающего действия ЭМИ оружия на личный состав, как правило, речь идет об эффектах временного нарушения адекватной сенсомоторики человека, возникновения ошибочных действий в его поведении и даже потери трудоспособности. Существенно, что негативные проявления воздействия мощных сверхкоротких СВЧ-импульсов не обязательно связаны с тепловым разрушением живых клеток биологических объектов. Поражающим фактором зачастую является высокая напряженность наведенного на мембранах клеток электрического поля, сравнимая с естественной квазистатической напряженностью собственного электрического поля внутриклеточных зарядов В опытах на животных установлено, что уже при плотности импульсно-модулированного СВЧ облучения на поверхности биологических тканей в 1, 5 мВт/см2 имеет место достоверное изменение электрических потенциалов мозга. Активность нервных клеток изменяется под действием одиночного СВЧ импульса продолжительностью от 0, 1 до 100 мс, если плотность энергии в нем достигает 100 мДж/см2. Последствия подобного влияния на человека пока мало изучены, однако известно, что облучение импульсами СВЧ иногда порождает звуковые галлюцинации, а при усилении мощности возможна даже потеря сознания.

Амплитуда напряжения, наводимого ЭМИ в проводниках, пропорциональна длине проводника, находящегося в его поле, и зависит от его ориентации относительно вектора напряженности электрического поля.

Так, напряженность поля ЭМИ в высоковольтных линиях электропередачи может достигать 50 кВ/м, что приведет к появлению в них токов силой до 12 тыс.ампер.

ЭМИ генерируются и при других видах ядерных взрывов - воздушном и наземном. Теоретически установлено, что в этих случаях его интенсивность зависит от степени ассимметричности пространственных параметров взрыва. Поэтому воздушный взрыв с точки зрения генерации ЭМИ наименее эффективен. ЭМИ наземного взрыва будет иметь высокую интенсивность, однако она быстро уменьшается по мере удаления от эпицентра.

Поскольку сбор экспериментальных данных при проведении подземных ядерных испытаний технически весьма сложен и дорогостоящ, то решение набора данных достигается методами и средствами физического моделирования.

Источники ЭМИ (оружие не летального воздействия). ЭМИ оружие может быть создано как в виде стационарных и мобильных электронных комплексов направленного излучения, так и в виде электромагнитных боеприпасов (ЭМБ), доставляемых к цели с помощью артиллерийских снарядов, мин, управляемых ракет(рис.2), авиабомб и т. п.

Стационарный генератор позволяет воспроизводить ЭМИ с горизонтальной поляризацией электрического поля. Он включает в себя высоковольтный генератор электрических импульсов (4 МВ), симметричную вибраторную излучающую антенну на двух мачтах и открытую бетонированную испытательную площадку. Установка обеспечивает формирование над испытательной площадкой (на высотах З и 10 м) ЭМИ с напряженностью поля, равной соответственно 35 и 50 кВ/м.

Мобильный (Транспортабельный) генератор НРDII предназначен для моделирования горизонтально поляризованного ЭМИ. Он включает в себя смонтированные на платформе трейлера высоковольтный генератор импульсов и симметричную вибраторную антенну, а также размещенную в отдельном фургоне аппаратуру сбора и обработки данных.

В основу ЭМБ положены методы преобразования химической энергии взрыва, горения и электрической энергии постоянного тока в энергию электромагнитного поля высокой мощности. Решение проблемы создания ЭМИ боеприпасов связано, прежде всего, с наличием компактных источников излучения, которые могли бы располагаться в отсеках боевой части управляемых ракет, а также в артиллерийских снарядах.

Наиболее компактными на сегодня источниками энергии для ЭМБ считаются спиральные взрывомагнитные генераторы (ВМГ), или генераторы с взрывным сжатием магнитного поля, имеющие наилучшие показатели удельной плотности энергии по массе (100 кДж/кг) и объему (10 кДж/см3), а также взрывные магнитодинамические генераторы (ВМДГ). В ВМГ с помощью взрывчатого вещества происходит преобразование энергии взрыва

в энергию магнитного поля с эффективностью до 10%, а при оптимальном выборе параметров ВМГ – даже до 20%. Такой тип устройств способен генерировать импульсы энергией в десятки мега джоулей и длительностью до 100 мкс. Пиковая мощность излучения может достигать 10 ТВт. ВМГ могут применяться автономно или как один из каскадов для накачки генераторов СВЧ диапазона. Ограниченная спектральная полоса излучения ВМГ (до нескольких мегагерц) делает их влияние на РЭС довольно избирательным.

Рис.2. Конструкция (а) и принцип (б) боевого применения типового ЭМБ.

Вследствие этого возникает проблема создания компактных антенных систем, согласованных с параметрами генерируемого ЭМИ. В ВМДГ взрывчатка или ракетное топливо применяются для образования плазменного потока, быстрое перемещение которого в магнитном поле приводит к возникновению сверхмощных токов сопутствующим электромагнитным излучением.

Основное преимущество ВМДГ многоразовость применения, поскольку картриджи со взрывчаткой или ракетным топливом могут закладываться в генератор многократно. Однако его удельные массогабаритные характеристики в 50 раз ниже, чем у ВМГ, и вдобавок технология ВМДГ еще не достаточно отработана, чтобы в ближайшей перспективе делать ставку на эти источники энергии.

Представьте, что у вас есть некое устройство, которое способно вывести из строя любую электронику на расстоянии. Согласитесь, похоже на сценарий какого-то фантастического фильма. Но это не фантастика, а вполне реальность. Такое устройство сможет сделать почти любой желающий своими руками, из деталей, которые свободно можно достать.

Описание устройства

Уничтожитель электроники – электромагнитная пушка, посылающая мощные направленные электромагнитные импульсы высокой амплитуды, способные вывести из строя микропроцессорную технику.

Принцип работы уничтожителя

Принцип работы отдаленно напоминает работу трансформатора Тесла и электрошокера. От элемента питания питается электронный высоковольтный повышающий преобразователь. Нагрузкой высоковольтного преобразователя является последовательная цепь из катушки и разрядника. Как только напряжение достигнет уровня пробивки разрядника, происходит разряд. Этот разряд дает возможность передать всю энергию высоковольтного импульса катушке из проволоки. Эта катушка преобразовывает высоковольтный импульс в электромагнитный импульс высокой амплитуды. Цикл повторяется несколько сот раз в секунду и зависит от частоты работы преобразователя.

Схема прибора

В роли разрядника будет использоваться один переключатель – его не нужно будет нажимать. А другой для коммутации.

Что нужно для сборки?

- Аккумуляторы 3,7 В –
- Корпус –
- Преобразователь высокого напряжения –
- Переключатели две штуки –
- Супер клей.
- Горячий клей.













Сборка

Берем корпус и сверлим отверстия под переключатели. Один с низу, другой с верху. Теперь делаем катушку. Наматываем по периметру корпуса. Витки фиксируем горячим клеем. Каждый виток отделен друг от друга. Катушка состоит из 5 витков. Собираем все по схеме, припаиваем элементы. Вставляем изоляционную прокладку между контактами высоковольтного выключателя, чтобы искра была внутри, а не снаружи. Закрепляем все детали внутри корпуса, закрываем крышку корпуса.








Требования безопасности

Будьте особо осторожны – очень высокое напряжение! Все манипуляции со схемой производите только после отключения источника питания.
Не используйте этот электромагнитный уничтожитель рядом с медицинским оборудование, или другим оборудованием, от которого может зависеть человеческая жизнь.

Результат работы магнитной пушки

Пушка лихо вышибает почти все чипы, конечно есть и исключения. Если у вас имеются ненужные электронные устройства можете проверить работу на них. Уничтожитель электроники имеет очень маленький размер и спокойно умещается в кармане.
Проверка на осциллографе. Держа щупы на расстоянии и не подключая, осциллограф просто зашкаливает.

С малых дистанций. Естественно я сразу же захотел сделать подобную самоделку, поскольку она довольно эффектная и на практике показывает работу электромагнитных импульсов. В первых моделях ЭМИ излучателя стояли несколько высоко ёмкостных конденсаторов из одноразовых фотоаппаратов, но данная конструкция работает не очень хорошо, из-за долгой "перезарядки". Поэтому я решил взять китайский высоковольтный модуль (который обычно используется в электрошокерах) и добавить к нему "пробойник". Данная конструкция меня устраивала. Но к сожалению у меня сгорел высоковольтный модуль и поэтому я не смог отснять статью по данной самоделке, но у меня было отснято подробное видео по сборке, поэтому я решил взять некоторые моменты из видео, надеюсь Админ будет не против, поскольку самоделка реально очень интересная.

Хотелось бы сказать что всё это было сделано в качестве эксперимента!

И так для ЭМИ излучателя нам понадобится:
-высоковольтный модуль
-две батарейки на 1,5 вольта
-бокс для батареек
-корпус, я использую пластиковую бутылку на 0,5
-медная проволока диаметром 0,5-1,5 мм
-кнопка без фиксатора
-провода

Из инструментов нам понадобится:
-паяльник
-термо клей

И так первым делом нужно намотать на верхнюю часть бутылки толстую проволоку примерно 10-15 витков, виток к витку (катушка очень сильно влияет на дальность электромагнитного импульса, лучше всего показала себя спиральная катушка диаметром 4,5 см) затем отрезаем дно бутылки




Берём наш высоковольтный модуль и припаиваем обязательно к входным проводам питание через кнопку, предварительно вынув батарейки из бокса




Берём трубочку от ручки и отрезаем от неё кусочек длиной 2 см:




Один из выходных проводов высоковольтника вставляем в отрезок трубочки и приклеиваем так как показано на фото:


С помощью паяльника проделываем отверстие с боку бутылки, чуть больше диаметра толстой проволоки:


Самый длинный провод вставляем через отверстие внутрь бутылки:


Припаиваем к нему оставшийся провод высоковольтника:


Располагаем высоковольтный модуль внутри бутылки:


Проделываем ещё одно отверстие с боку бутылки, диаметром чуть больше диаметра трубочки от ручки:


Вытаскиваем отрезок трубочки с проводом через отверстие и крепко приклеиваем и изолируем термо клеем:




Затем берём второй провод от катушки и вставляем его внутрь куска трубочки, между ними должен остаться воздушный зазор, 1,5-2 см, подбирать нужно экспериментальным путём




укладываем всю электронику внутрь бутылки, так чтобы ни чего не замыкало, не болталось и было хорошо заизолировано, затем приклеиваем:




Делаем ещё одно отверстие по диаметру кнопки и вытаскиваем её изнутри, затем приклеиваем:




Берём отрезанное дно, и обрезаем его по краю, так чтобы оно смогло налезть на бутылку, надеваем и приклеиваем:






Ну вот и всё! Наш ЭМИ излучатель готов, осталось только его протестировать! Для этого берём старый калькулятор, убираем ценную электронику и желательно одеваем резиновые перчатки, затем нажимаем на кнопку и подносим калькулятор, в трубочке начнёт происходить пробои электрического тока, катушка начнёт испускать электромагнитный импульс и наш калькулятор сначала сам включится, а потом начнёт рандомно сам писать числа!

До этой самоделки я делал ЭМИ на базе перчатки, но к сожалению отснял только видео испытаний, кстати с этой перчаткой я ездил на выставку и занял второе место из-за того что плохо показал презентацию. Максимальная дальность ЭМИ перчатки составляла 20 см. Надеюсь эта статья была вам интересна, и будьте осторожны с высоким напряжением!

Вас достала слишком громкая музыка соседей или просто хотите сделать какой-нибудь интересный электротехнический прибор самостоятельно? Тогда можете попробовать собрать простой и компактный генератор электромагнитных импульсов, который способен выводить из строя электронные устройства поблизости.



Генератор ЭМИ, представляет собой устройство, способное генерировать кратковременное электромагнитное возмущение, которое излучается наружу от своего эпицентра, нарушая при этом работу электронных приборов. Некоторые всплески ЭМИ встречаются в природе, например, в виде электростатического разряда. Также существуют искусственные всплески ЭМИ, к таким можно отнести ядерный электромагнитный импульс.


В данном материале будет показано, как собрать элементарный генератор ЭМИ, используя обычно доступные элементы: паяльник, припой, одноразовый фотоаппарат, \кнопка-переключатель, изолированный толстый медный кабель, проволока с эмалированным покрытием, и сильноточный фиксируемый переключатель. Представленный генератор будет не слишком сильным по мощности, поэтому у него может не получиться вывести из строя серьезную технику, но на простые электроприборы он повлиять в состоянии, поэтому данный проект следует рассматривать как учебный для новичков в электротехнике.


Итак, во-первых, нужно взять одноразовый фотоаппарат, например, Kodak. Далее нужно вскрыть его. Откройте корпус и найдите большой электролитический конденсатор. Делайте это в резиновых диэлектрических перчатках, чтобы не получить удар током при разряде конденсатора. При полной зарядке на нем может быть до 330 В. Проверьте вольтметром напряжение на нем. Если заряд еще имеется, то снимите его, замкнув выводы конденсатора отверткой. Будьте осторожны, при замыкании появится вспышка с характерным хлопком. Разрядив конденсатор, вытащите печатную плату, на которой он установлен, и найдите маленькую кнопку включения/выключения. Отпаяйте ее, а на ее место запаяйте свою кнопку-переключатель.



Припаяйте два изолированных медных кабеля к двум контактам конденсатора. Один конец этого кабеля подключите к сильноточному переключателю. Другой конец оставьте пока свободным.


Теперь нужно намотать нагрузочную катушку. Оберните проволоку с эмаль-покрытием от 7 до 15 раз вокруг круглого объекта диаметром 5 сантиметров. Сформировав катушку, оберните ее клейкой лентой для большей безопасности при ее эксплуатации, но оставьте два выступающих провода для подключения к клеммам. Используйте наждачную бумагу или острое лезвие, чтобы удалить эмалевое покрытие с концов проволоки. Один конец соедините с выводом конденсатора, а другой с сильноточным переключателем.



Теперь можно сказать, что простейший генератор электромагнитных импульсов готов. Чтобы зарядить его, просто подключите батарею к соответствующим контактам на печатной плате с конденсатором. Поднесите к катушке какое-нибудь портативное электронное устройство, которое не жалко, и нажмите переключатель.



Помните, что не стоит удерживать нажатой кнопку заряда при генерации ЭМИ, иначе вы можете повредить цепь.